Home
Class 12
MATHS
lim(xrarr0)(e^(tanx)-e^x)/(tanx-x) is eq...

`lim_(xrarr0)(e^(tanx)-e^x)/(tanx-x)` is equal to

A

1

B

`1/2`

C

`1/3`

D

0

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 0) (e^(tanx)-e^x)/(tanx-x)=

The value of lim_(xrarr0)(secx+tanx)^(1)/(x) is equal to

The value of lim_(xrarr0)(cos(tanx)-cosx)/(4x^(4)) is equal to

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

lim_(xrarr0)(sinx)^(2tanx)

lim_(xrarr0)(tanx-x)/(x^2tanx) equals

lim_(xrarr0) (tanx-x)/(x^(2)tanx) =?

Evaluate the following limits: lim_(xrarr0)((e^(tanx)-1))/(tanx)