Home
Class 12
MATHS
The function f(x)={((|x|(3e^(1//|x|)+4)...

The function
`f(x)={((|x|(3e^(1//|x|)+4))/(2-e^(1//|x|)),x ne 0),(0, x =0):}`

A

differentiable at x=0

B

non-differentiable at x=0

C

not continuous at x=0

D

Cannot be determined

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

Let f (x)= [{:((x(3e^(1//x)+4))/(2 -e^(1//x)),,,( x ne 0)),(0 ,,, x=0):} x ne (1)/(ln 2) which of the following statement (s) is/are correct ?

On the interval I=[-2,2] , the function f(x)={{:(,(x+1)e^(-((1)/(|x|)+(1)/(x))),x ne 0),(,0,x=0):}

Examine the continuity of the following function at the indicated pionts. f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1), x ne 0),(,0, x =0):}" at x=0"

Discuss the continuity and differentiability of the function f(x)={(|x|(3e^((1)/(2e))+4))/(2-e^((1)/(|x|))),x!=0x=0atx=0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0