Home
Class 12
MATHS
lim(nrarrinfty)((n^2-n+1)/(n^2-n-1))^(n(...

`lim_(nrarrinfty)((n^2-n+1)/(n^2-n-1))^(n(n-1))` is equal to

A

e

B

`e^2`

C

`e^(-1)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(ntooo) ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is equal to

lim_(n rarr oo)((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1)) is

lim_(n rarr infty ) [((n+1)(n+2)...3n)/(n^(2n))]^(1//n) is equal to

a_ (n) = (1+ (1) / (n ^ (2))) (1+ (2 ^ (2)) / (n ^ (2))) ^ (2) (1+ (3 ^ ( 2)) / (n ^ (2))) ^ (3) ......... (1+ (n ^ (2)) / (n ^ (2))) ^ (n) then lim_ (n rarr oo) a_ (n) ^ (- (1) / (n ^ (2))) is equal to

underset(n to oo)lim ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1))

The value of lim_(n rarr infty) (1)/(n) {(n+)(n+2)(n+3)…(n+n)}^(1//n) is equal to