Home
Class 12
MATHS
If y = cos t and x = sin t, then what is...

If y = cos t and x = sin t, then what is the value of dy/dx ?

A

xy

B

`x//y`

C

`-y//x`

D

`-x//y`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = sint cos2t and y = cost sin2t , then at t = pi/4 , the value of dy/dx is equal to:

If x=sin t-t cos t and y = t sin t +cos t, then what is (dy)/(dx) at point t=(pi)/(2)?

If x=a(sin t-t cos t),y=a sin t then find the value of (d^(2)y)/(dx^(2))

If x=cos t+t sin t and y=sin t-t cos t ,then the value of (d^(2)x)/(dy^(2)) is (where 't' is parameter

If x = 2 cos t - cos 2t , y = 2 sin t - sin 2t , then the value of |(d^(2) y)/(dx^(2))|_(t= pi//2 ) is

If x= e^(cos2t) and y = e^(sin2t) , then move that (dy)/(dx) = -(ylogx)/(xlogy) .

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)