Home
Class 12
MATHS
If y=(cos x)^((cosx)^cosx...infty), then...

If `y=(cos x)^((cosx)^cosx...infty)`, then dy/dx is equal to

A

`(ytanx)/(ylogcosx-1)`

B

`(y^2tanx)/(ylogcosx-1)`

C

`(ytanx)/(1+ylogcosx)`

D

None of the above

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If y=(cos x)^((cosx)^((cos x )...oo)) then prove that dy/dx=(y^2 tan x)/(y log (cosx)-1).

If y = (cosx)^((cosx)^((cosx)^("....."oo))) , then show that (dy)/(dx) =(y^(2)tanx)/(ylogcosx-1)

Knowledge Check

  • If y = (cos x)^((cosx)^((cos x)...oo)), " then " dy/dx is equal to

    A
    `(y tan x)/(y log cos x-1)`
    B
    `(y^(2) tan x)/(y log cos x-1)`
    C
    `(y tan x)/(1+y log cos x)`
    D
    None of these
  • If y=(cosx)^((cosx)) then (dy)/(dx) is equal to :

    A
    `(-y^(2)tanx)/(1-yln(cosx))`
    B
    `(y^(2)tanx)/(1+yln(cosx))`
    C
    `(y^(2)tanx)/(1-yln(sinx))`
    D
    `(y^(2)sinx)/(1-yln(sinx))`
  • If y=log_(sinx)cosx , then dy/dx is equal to

    A
    `(tanxlog(sinx)-cotxlogcosx)/((logsinx)^2)`
    B
    `(-tanxlogsinx-cotxlogcosx)/((logsinx)^2)`
    C
    `(-tanxlog(sinx)-cotxlogcosx)/((logsinx)^2)`
    D
    `(tanxlog(sinx)-cotxlog(cosx))/([(logsinx)^2])
  • Similar Questions

    Explore conceptually related problems

    If y=(x)^(cosx)+(cosx)^(sinx) , find (dy)/(dx).

    If y=log_(cosx)sinx, then (dy)/(dx) is equal to

    if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

    if y=(sin(x+9))/(cosx) , then (dy)/(dx) at x=0 is equal to

    If y=(sin x)^(tan x)+ (cosx) ^(secx) ,then (dy)/(dx)