Home
Class 12
MATHS
The differential coefficient of tan^(-1)...

The differential coefficient of `tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))`, is

A

`sqrt(1-x^2)`

B

`1/(sqrt(1-x^2))`

C

`1/(2sqrt(1-x^2))`

D

x

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1-x))) is

If y=tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))), find (dy)/(dx)

If y=tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}, find (dy)/(dx)

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

tan^(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}

Differentiate (sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))

Differentiate the following with respect of x:tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

tan^-1 (sqrt(x)+sqrt(a))/(1-sqrt(x)sqrt(a))