Home
Class 12
MATHS
d/dx[sin^(-1)(xsqrt(1-x)-sqrtxsqrt(1-x^2...

`d/dx[sin^(-1)(xsqrt(1-x)-sqrtxsqrt(1-x^2))]` is equal to

A

`1/(2sqrt(x(1-x)))-1/(sqrt(1-x^2))`

B

`1/sqrt(1-{xsqrt(1-x)-sqrt(x(1-x^2))}^2)`

C

`1/(sqrt(1-x^2))-1/(2sqrt(x(1-x)))`

D

`1/(sqrt(x(1-x)(1-x)^2))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)[sin^(-1)(xsqrt(1 - x)- sqrt(x)sqrt(1 - x^(2)))] is equal to

(d)/(dx)[sin^(-1)(x sqrt(1-x)-sqrt(x)sqrt(1-x^(2)))] is

(d)/(dx)[sin^(-1)x+sin^(-1)sqrt(1-x^(2))]=

d//dx[sin^(2)cot^(-1)""(1)/(sqrt((1+x)/(1-x)))] , is equal to -

Differentiate sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2)) , if x in(-(1)/(2sqrt2),(1)/(2sqrt2))

Differentiate sin^(-1)(2xsqrt(1-x^2)), -1/(sqrt(2))

(d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=

Differentiate sin(-1)[(sqrt(1+x)+sqrt(1-x))/2] with respect to 'x'.