Home
Class 12
MATHS
If In=int(logx)^n dx, then In+nI(n-1) i...

If `I_n=int(logx)^n dx, ` then` I_n+nI_(n-1)` is equal to

A

`x(logx)^n`

B

`(xlogx)^n`

C

`(logx)^(n-1)`

D

`n(logx)^n`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int(ln x)^(n)dx then I_(n)+nI_(n-1)

If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to

If I_(n)-int(lnx)^(n)dx, then I_(10)+10I_(9) is equal to (where C is the constant of integration)

If = int_(1)^(e) (logx)^(n) dx, "then"I_(n)+nI_(n-1) is equal to

If I_(n)=int(sin x)^(n)dx,n in N, then 5I_(4)-6I_(6) is equal to

int((logx)^n)/(x)dx=

If I_(n)=int cos^(n)xdx, then (n+1)I_(n+1)-nI_(n-1)=

If I_(n)=int_(0)^( pi)e^(x)(sin x)^(n)dx, then (I_(3))/(I_(1)) is equal to