Home
Class 12
MATHS
If In=int(logx)^n dx, then In+nI(n-1) i...

If `I_n=int(logx)^n dx, ` then` I_n+nI_(n-1)` is equal to

A

`x(logx)^n`

B

`(xlogx)^n`

C

`(logx)^(n-1)`

D

`n(logx)^n`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If I_(n)=int(ln x)^(n)dx then I_(n)+nI_(n-1)

If I_(n)=int(sin x)^(n)dx,n in N, then 5I_(4)-6I_(6) is equal to

Knowledge Check

  • If I_(n)=int_(1)^(e)(log x)^(n) d x, then I_(n)+nI_(n-1) equal to

    A
    `(1)/(e)`
    B
    e
    C
    `e-1`
    D
    None of these
  • If I_n=int tan^n xdx , then (n-1)(I_n+I_(n-2)) is equal to

    A
    `tan^n x`
    B
    `cot^n x`
    C
    `tan^(n-1) x`
    D
    `cot^(n-1) x`
  • If I_(n)-int(lnx)^(n)dx, then I_(10)+10I_(9) is equal to (where C is the constant of integration)

    A
    `x(lnx)^(10)+C`
    B
    `10(lnx)^(9)+C`
    C
    `9(lnx)^(10)+C`
    D
    `x(lnx)^(9)+C`
  • Similar Questions

    Explore conceptually related problems

    If I_(n)=int_(0)^( pi)e^(x)(sin x)^(n)dx, then (I_(3))/(I_(1)) is equal to

    If = int_(1)^(e) (logx)^(n) dx, "then"I_(n)+nI_(n-1) is equal to

    int((logx)^n)/(x)dx=

    If I_(n)=int cos^(n)xdx, then (n+1)I_(n+1)-nI_(n-1)=

    If I_n = int_0^(pi//2) x^(n) sin x dx and n gt 1 then I_n + n (n-1) I_(n-2) is equal to