Home
Class 12
MATHS
The value of underset(n rarr oo)"lim" s...

The value of ` underset(n rarr oo)"lim" sum_(r=1)^n r^3/(r^4+n^4)` is equal to

A

`1/2 log_e (1//2)`

B

`1/4 log_e (1//2)`

C

`1/4 log_e 2`

D

`1/2 log_e 2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n to oo) sum_(r=1)^(n) ((r^(3))/(r^(4) + n^(4))) equals to-

lim_(n rarr oo)sum_(r=2n+1)^(3n)(n)/(r^(2)-n^(2)) is equal to

lim_(nrarr0) sum_(r=1)^(n) ((r^(3))/(r^(4)+n^(4))) equals to :

lim_(n to oo) " " sum_(r=2n+1)^(3n) (n)/(r^(2)-n^(2)) is equal to

The value of underset( n rarroo)(lim) underset(r=1)overset(r=4n)(sum)(sqrt(n))/(sqrt(r ) (3 sqrt(r)+4)sqrt(n)^(2)) is equal to

The value of lim_(n rarr oo)sum_(r=n^(2))^(n^(2)+9+6n)(1)/(sqrt(r)) is equal to

The value of lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)((r)/(n+r)) is equal to