Home
Class 12
MATHS
int(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) i...

`int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx))` is equal to

A

`pi/12`

B

`pi/2`

C

`pi/6`

D

`pi/4`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-1: The value of the integral int_(pi//6)^(pi//3) (1)/(sqrt(tan)x)dx is equal to (pi)/(6) Statement-2: int_(a)^(b) f(x)dx=int_(a)^(b) f(a+b-x)dx

(36)/(pi)int_(pi/6)^( pi/3)(dx)/(1+sqrt(cot x)) equals to

int_(0)^(pi//2) (dx)/(1+root(3)(tanx)) is equal to

The value of the integral int_(pi//6)^(pi//3) (1)/(1+sqrt(tan x))dx is

int_(pi/12)^(pi/2)(dx)/(1+sqrt(cotx))

The Integral I=int_(pi/6)^((5pi)/6)(dx)/(1+cosx) is equal to:

int_(pi//6)^(pi//3)(1)/(1+tan x) dx=

I_(1) = int_(pi/6)^(pi/3) (dx)/(1+sqrt(tanx)) and I_(2) = (sqrt(sinx)dx)/(sqrt(sinx) + sqrt(cosx)) What is I_(1) equal to ?