Home
Class 12
MATHS
int (1+tan^2 x)/(1-tan^2 x) dx equals...

`int (1+tan^2 x)/(1-tan^2 x) dx `equals

A

`log((1-tanx)/(1+tanx))+C`

B

`log((1+tanx)/(1-tanx))+C`

C

`1/2log((1-tanx)/(1+tanx))+C`

D

`1/2 log((1+tanx)/(1-tanx))+C`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int(1+tan^2x)/(1-tan^2x)dx=

int(2tan x)/(1+tan^(2)x)dx

int(1+tan^(2)x)/(1+cot^(2)x)dx

int(1+tan^(2)x)/(1+cot^(2)x)dx-

" (.) "int(tan x)/(1+tan x)dx

int tan^(-1)((2x)/(1-x^(2)))dx

int tan(2x+1)dx