Home
Class 12
MATHS
If int (dx)/(x^4+x^3)=A/x^2+B/x + log|x/...

If `int (dx)/(x^4+x^3)=A/x^2+B/x + log|x/(x+1)|+C`, then

A

`A=1/2,B=1`

B

`A=1,B=1/2`

C

`A=-1/2,B=1`

D

`A=1,B=1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If int dx/(x^4+x^3)=A/x^2+b/x+ln|x/(x+1)|+C, then

If int(dx)/(x^(4)+x^(2))=(A)/(x^(2))+(B)/(x)+ln|(x)/(x+1)|+C then

If int(1)/(x^(3)+x^(4))dx=(A)/(x^(2))+(B)/(x)+log|(x)/(x+1)|+C , then

int(ln x)/((1+x)^(3))dx

If int ((x -1) dx )/( (x +1) (x -2))= A log |x +1| +B log |x-2| then A + B =1

int((x+1)(x+log x)^(3))/(x)dx

int (dx)/((x+1)(x-2))=A log (x+1)+B log (x-2)+C , where

If int (x^4 + 1)/(x(x^2+1)^2)\ dx = A ln |x| +B/(1+x^2)+C, then A+B equals to :

If int (dx)/(x ^(4) (1+x^(2)))=a ln |(1+x ^(3))/(x ^(3))| +(b)/(x ^(3)) +(c)/(1+ x^(2)) +d. then (where d is arbitrary constant)