Home
Class 12
MATHS
int1^2 e^x(1/x-1/(x^2)) dx is equal to...

`int_1^2 e^x(1/x-1/(x^2)) dx` is equal to

A

`e- (e^2)/2`

B

`(e^2)/2-e`

C

`(e^2)/2+e`

D

`e^2/2-2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(x)""((x-1)/(x^(2)))dx is equal to

int[e^(x)(1/x-1/(x^(2)))]dx

int1/(1+e^(x))dx is equal to

int(x e^(x))/((1+x)^(2)) dx is equal to

int e^(x)((x-2)/((x-1)^(2)))dx is equal to (i) (e^(x))/(x-1)+C (ii) (e^(x))/((x-1)^(2))+C( iii) (2e^(x))/((x-1)^(2))+C( iv )(e^(x)-1)/(x-1)+C

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int _(1)^(2) (1/x - 1/(2x^(2)))e^(2x) dx is equal to