Home
Class 12
MATHS
The value of int1^(e^2) (dx)/(x(1+logx)^...

The value of `int_1^(e^2) (dx)/(x(1+logx)^2` is

A

`2/3`

B

`1/3`

C

`3/2`

D

In 2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(2)(dx)/(x(1+logx)^(2))

The value of int_(1)^(e)(dx)/(6x(logx)^(2)+7x(logx)+2x)=

int_(1//e)^(e)(dx)/(x(logx)^(1//3))

The value of int_(0)^(oo) (logx)/(1+x^(2))dx , is

Evaluate int_(1)^(2)(logx)/(x)dx

The value of int(logx)/(x+1)^(2)dx is

int_(1)^(2)(logx)/(x)dx

int_(1)^(2)(logx)/(x)dx

The value of int(e^(6logx)-e^(5logx))/(e^(4logx)-e^(3logx))dx is equal to