Home
Class 12
MATHS
int0^pi sqrt((1+cos2x)/2) dx is equal to...

`int_0^pi sqrt((1+cos2x)/2) dx` is equal to

A

0

B

2

C

4

D

`-2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi) sqrt((cos2x+1)/2)dx is equal to

What is int_0^(2pi) sqrt(1+ sin""x/2 dx) equal to

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

The value of int_0^(pi//4) sqrt(tan x dx) +int_0^(pi//4) sqrt(cot x dx) is equal to

int_(0)^(pi//4)sqrt(1+cos2x)dx

int_0^pi sqrt((1+cos2x)/2)dx= (A) 0 (B) 1 (C) 2 (D) none of these

int_(0)^(pi//2)sqrt(1+cos2x)dx=?

int_(0)^(200 pi) sqrt((1-cos2x)/(2))dx=

int _(0)^(pi//2) sqrt(1+ cos x dx)