Home
Class 12
MATHS
The value of int0^(2pi) (dx)/(e^(sinx)+1...

The value of `int_0^(2pi) (dx)/(e^(sinx)+1)` is

A

`pi`

B

0

C

`2 pi`

D

`pi/2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(dx)/((1+sinx))=?

int_(0)^(pi)(x)/(1+sinx)dx .

The value of int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1) dx is equal to

The value of int _(0)^(pi//2) (2^(sinx))/(2^(sinx)+2^(cosx))dx is

The value of int_0^(pi//2)cosx\ e^(s in x)dx\ i s 1 b. e-1 c. 0 d. -1

Find the value of int_0^(2pi) |sinx|dx

Find int_0^(pi/2)dx/(1+sinx)

The value of int_(0)^(pi//2) log (sinx) dx is