Home
Class 12
MATHS
underset(n rarr oo)lim[1/(n^2) "sec"^2 1...

`underset(n rarr oo)lim[1/(n^2) "sec"^2 1/(n^2)+2/(n^2) "sec"^2 4/(n^2) +.....+n/(n^2) "sec"^2 1] ` equals

A

`1/2 "tan"1`

B

tan 1

C

`1/2 "cosec"1`

D

`1/2 "sec"1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(n rarr oo)[(1)/(n^(2))sec^(2)(1)/(n^(2))+2/n^(2)sec^(2)(4)/(n^(2))+...+(1)/(n)sec^(2)1]]

underset(n to oo)lim ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1))

lim_ (n rarr oo) [(1) / (1-n ^ (2)) + (2) / (1-n ^ (2)) + ... + (n) / (1-n ^ (2 ))] is

lim_(n rarr oo)[(1)/(n^(2))sec^(2)((pi)/(3n^(2)))+(2)/(n^(2))sec^ (2)((4 pi)/(3n^(2)))+(3)/(n^(2))sec^(2)((9 pi)/(3n^(2)))+. .....+(1)/(n)sec^(2)((pi)/(3))]

underset(n to oo)lim {1/(1-n^(2))+(2)/(1-n^(2))+....+(n)/(1-n^(2))} is equal to

lim_(n rarr oo)[(1)/(n^(2))+(2)/(n^(2))+....+(n)/(n^(2))]

lim_ (n rarr oo) [(1) / (n ^ (2)) * sec ^ (2) ((1) / (n ^ (2))) + (2) / (n ^ (2)) * sec ^ (2) ((4) / (n ^ (2))) + ............ + (1) / (n) * sec ^ (2) 1]