Home
Class 12
MATHS
Given a subspace of R^3 V={a0+a1x+a2x^2...

Given a subspace of `R^3` `V={a_0+a_1x+a_2x^2+a_3x_i^2,xsiR}`

A

`S=(1,x,x^2,x^3}` is a bsis

B

V has dimension 2

C

V has dimension #

D

V has dimension 4

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let n be a positive integer, such that (1 + x + x^2)^n=a_0 +a_1x+ a_2 x^2+a_3 x^3+......a_(2n) x^(2n), Answer the following question: The value of a when (0 leq r leq n) is (A) a_(2n-r) (B) a_(n-r) (C) a_(2n) (D) n. a_(2n-1)

Given that (1+x+x^2)^n=a_0+a_1x+a_2x^2+.....+a_(2n)x^(2n) find i) a_0 + a_1 +a_2 .. . . .+ a_(2n) ii) a_0 - a_1 + a_2 - a_3 . . . . + a_(2n) iii) (a_0)^2 - (a_1)^2 . . . . .+ (a_(2n))^2

If the remainder of the polynomial a_0 + a_1x + a_2x^2 + .... + a_n x^n when divided by (x - 1) is 1, then which one of the following is correct ?

Let f(x) denote the departement f(x)=|{:(x^2,2x,1+x^2),(x^2+1,x+1,1),(x,-1,x-1):}| on expansion f(x) is sen to be a 4th degree polynomial given by f(x)=a_0x^4+a_1x^3+a_2x^2+a_3x+a_4 Using defferentiation of otherwise, match the values of the uantities on the left to those on the right.

If (1 + ax + b x^2)^4 = a_0 +a_1 x + a_2 x^2 +...+a_8 x^8 when a,b,a_0,a_1,a_2...,a_8 in R such that a_0+a_1+a_2 != 0 and |(a_0,a_1,a_2),(a_1,a_2,a_3),(a_2,a_0,a_1)| then the value of 5a/b (A) 6 (B) 8 (C) 10 (D) 12