Home
Class 12
MATHS
An eigenvector of A = abs([1,1,0],[0,2,2...

An eigenvector of `A = abs([1,1,0],[0,2,2],[0,0,3])` is

A

`[-1,1,1]^T`

B

`[1,2,1]^T`

C

`[1,-1,2]^T`

D

`[2,1,-1]^T`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=|[1,0,1],[0,1,2],[0,0,4]| then |3A|

Find the value of abs(2A) if A= abs([1,0,1],[0,1,0],[1,0,2])

Show that : The value of Delta=abs([1,0,3],[0,1,0],[1,0,2])=-1

Find the minors and cofactors of the elements of the following determinants: abs([1,0,4],[3,5,-1],[0,0,2])

Evaluate the determinates abs([2,-1,-2],[0,2,-1],[3,-5,0])

If possible AB And BA Find out when A= [[1,0,2],[0,1,2]] ,B= [[-1,2],[-2,3],[-3,1]]

abs((2,0,1),(1,0,0),(3,2,0)).B=[B_I,B_(II),B_(III)] are column vector if AB_1=abs((1),(0),(0))AB_(II)=abs((2),(0),(1))AB_(III)=abs((3),(2),(1)) if alpha = sum of the diagonal elements of B. beta = det (B) in find abs(a^3+beta^3)