Home
Class 12
MATHS
An eigenvector of A = abs([1,1,0],[0,2,2...

An eigenvector of `A = abs([1,1,0],[0,2,2],[0,0,3])` is

A

`[-1,1,1]^T`

B

`[1,2,1]^T`

C

`[1,-1,2]^T`

D

`[2,1,-1]^T`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

If A=|[1,0,1],[0,1,2],[0,0,4]| then |3A|

Find the value of abs(2A) if A= abs([1,0,1],[0,1,0],[1,0,2])

Knowledge Check

  • The eigenvectors of the matrix abs([1,2],[0,2]) are written in the form abs([1],[a]) and abs([1],[b]) what is a+b?

    A
    0
    B
    (1/2)
    C
    1
    D
    2
  • How many of the following have an eigenvalue 1? abs([1,0],[0,0])abs([0,1],[0,0]) and abs([-1,0],[1,-1])

    A
    one
    B
    two
    C
    three
    D
    four
  • Similar Questions

    Explore conceptually related problems

    Show that : The value of Delta=abs([1,0,3],[0,1,0],[1,0,2])=-1

    Find the minors and cofactors of the elements of the following determinants: abs([1,0,4],[3,5,-1],[0,0,2])

    Evaluate the determinates abs([2,-1,-2],[0,2,-1],[3,-5,0])

    If possible AB And BA Find out when A= [[1,0,2],[0,1,2]] ,B= [[-1,2],[-2,3],[-3,1]]

    If A=[(1,2,3),(0,1,2),(0,0,1)] then A^(-1) =………..

    abs((2,0,1),(1,0,0),(3,2,0)).B=[B_I,B_(II),B_(III)] are column vector if AB_1=abs((1),(0),(0))AB_(II)=abs((2),(0),(1))AB_(III)=abs((3),(2),(1)) if alpha = sum of the diagonal elements of B. beta = det (B) in find abs(a^3+beta^3)