Home
Class 12
MATHS
Consider the improper integral I1=int0^i...

Consider the improper integral `I_1=int_0^inftydx/(xsqrt(x^2+1))` and `I_2=int_0^inftye^(-x^2)dx`.then

A

`l_1`Is convergent but `l_2` Is divergent

B

`l_2` Is divergent but `l_2`is convergent

C

Both `l_1`and `l_2`are convergent

D

Neither`l_2`nor`l_2`is convergent

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the integral: int_0^sqrt(2) dx/(xsqrt(x^2 - 1))

If l_(1)=int_(0)^(1)(dx)/(sqrt(1+x^(2))) and I_(2)=int_(0)^(1)(dx)/(|x|) then

int_(0)^(2)xsqrt(2+x)dx

Compute the integral I = int_(0)^(1) ("arc sin x")/(sqrt(1 - x^(2)))dx

Consider the integrals I_(1)=int_(0)^(1)e^(-x)cos^(2)xdx,I_(2)=int_(0)^(1) e^(-x^(2))cos^(2)x dx,I_(3)=int_(0)^(1) e^(-x^(2))dx and I_(4)=int_(0)^(1) e^(-x^(1//2)x^(2))dx . The greatest of these integrals, is

int_(0)^(2) xsqrt(2-x)dx