Home
Class 12
MATHS
sum(i=1)^n sum(j=1)^t sum(k=1)^j is equa...

`sum_(i=1)^n sum_(j=1)^t sum_(k=1)^j` is equal to

A

`4(n(n+1)(2n+1))/6`

B

`[(n(n+1))/2]^2`

C

`(n(n+1))/2`

D

`(n(+1) (n+2))/6`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(i=1)^(n) sum_(j=1)^(i) sum_(k=1)^(j) 1 is

S=sum_(i=1)^(n)sum_(j=1)^(i)sum_(k=1)^(j)1

sum_(i=1)^(n) sum_(i=1)^(n) i is equal to

The value of sum_(i=1)^nsum_(j=1)^isum_(k=1)^j1=220 , then the value of n equals a.11 b. 12 c.10 d. 9

sum_(j=1)^(n)sum_(i=1)^(n)i=

The value of sum_(i=1)^(n)sum_(j=1)^(i)sum_(k=1)^(j)=220 , then the value of n equals

If sum_(r=1)^(n)t_(r)=sum_(k=1)^(n)sum_(j=1)^(k)sum_(i=1)^(j)2, then sum_(r=1)^(n)(1)/(t_(r))=

The sum sum_(k=1)^(10)underset(i ne j ne k)underset(j=1)(sum^(10))sum_(i=1)^(10)1 is equal to

sum_(0<=i<=j<=n)sum^(n)C_(i) is equal to