Home
Class 12
MATHS
If alpha, beta ne 0, f(n) = alpha^n+ bet...

If `alpha, beta ne 0, f(n) = alpha^n+ beta^n` and
`abs([3,1+f(1) ,1+f(2)],[1+f(1),1+f(2),1+f(3)],[1+f(2),1+f(3),1+f(4)])` =k(1-alpha)^2(1-beta)^2(alpha-beta)^2` then k is equal to

A

`alpha beta`

B

`1/alpha beta`

C

1

D

-1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta!=0 , and f(n)""=alpha^n+beta^n and |3 1+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)1+f(3)1+f(4)|=K(1-alpha)^2(1-beta)^2(alpha-beta)^2 , then K is equal to (1) alphabeta (2) 1/(alphabeta) (3) 1 (4) -1

Let f(n)=a^n+b^n and |(3, 1+f(1), 1f(2)),(1+f(1), 1+f(2), 1+f(3)),(1+f(2), 1+f(3), 1+f(4))|=k(1-a)^2(1-b)^2(a-b)^2 , then k= (A) 0 (B) 1 (C) -1 (D) 4

If f(x)=alpha x+beta and f(0)=f^(1)(0)=1 then f(2) =

If f(x)= alpha x+beta and f(0)=f^(')(0)=1 then f(2) =

| alpha alpha1 beta F|=(alpha-P)(beta-alpha)

If a+alpha=1,b+beta=2 and af(n)+alphaf(1/n)=bn+beta/n , then find the value of (f(n)+f(1/n))/(n+1/n)

If f(x)=alpha x+beta and f ={(1, 1), (2, 3), (3, 5), (4, 7)}, then the values of alpha,beta are :