Home
Class 12
MATHS
The derivative of tan^(-1) ((sqrt1+x-sqr...

The derivative of `tan^(-1) ((sqrt1+x-sqrt1-x)/(sqrt 1+x+ sqrt1-x))` is

A

`(sqrt1-x^2`

B

`1/(sqrt1-x^2`

C

`1/(2sqrt1-x^2`

D

x

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The derivative of tan^(-1)((sqrt(1 + x)-sqrt(1-x))/(sqrt(1 + x)+sqrt(1-x))) is

tan^(-1)((sqrt(1+x)+sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))

The differential coefficient of tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

Differentiate the following with respect of x:tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))

The derivative of sqrt(sqrt(x)+1) is

Write the simplest form : tan^(-1)( (sqrt(1+x)-sqrt(1-x))/(sqrt(1+x) + sqrt(1-x))); (-1)/sqrt(2) le x le 1

tan^(-1){(sqrt(1+cos x)+sqrt(1-cos x))/(sqrt(1+cos x)-sqrt(1-cos x))}

Solve : (sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))