Home
Class 14
MATHS
sqrt ? + 29 = sqrt 2704...

`sqrt ? + 29 = sqrt 2704`

A

23

B

529

C

441

D

21

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{x} + 29 = \sqrt{2704} \), we will follow these steps: ### Step 1: Simplify the right side of the equation First, we need to calculate \( \sqrt{2704} \). \[ \sqrt{2704} = 52 \] ### Step 2: Rewrite the equation Now we can rewrite the equation using the value we found: \[ \sqrt{x} + 29 = 52 \] ### Step 3: Isolate the square root Next, we will isolate \( \sqrt{x} \) by subtracting 29 from both sides: \[ \sqrt{x} = 52 - 29 \] Calculating the right side gives: \[ \sqrt{x} = 23 \] ### Step 4: Square both sides To eliminate the square root, we will square both sides of the equation: \[ x = 23^2 \] Calculating \( 23^2 \): \[ x = 529 \] ### Conclusion Thus, the value of \( x \) (the quotient mark) is: \[ \boxed{529} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of sqrt(29.16) + sqrt(0.2916) + sqrt(0.002916) + sqrt(0.00002916) ?

Find the value of x , if 21^(sqrt(x)) + 20^(sqrt(x)) = 29^(sqrt(x)) .

If 3a=4b=6c and a+b+c=27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is (a) 3sqrt(29) (b) 81 (c) 87 (d) None of these

If3a=4b=6c and a+b+c= 27sqrt(29) then sqrt(a^(2)+b^(2)+c^(2)) is equal to

Find x : ( sqrt(x) + sqrt(a) ) / ( sqrt(x) - sqrt(a) ) + ( sqrt(x) - sqrt(a) ) / ( sqrt(x) + sqrt(a) ) = 6