Home
Class 14
MATHS
The value of i^101 + i^102 + i^103 + ......

The value of `i^101 + i^102 + i^103 + .....+i^108` is :

A

8

B

-1

C

0

D

-2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( i^{101} + i^{102} + i^{103} + \ldots + i^{108} \), we first need to understand the powers of \( i \), where \( i \) is the imaginary unit defined as \( i = \sqrt{-1} \). ### Step-by-Step Solution: 1. **Identify the Pattern of Powers of \( i \)**: The powers of \( i \) cycle every four terms: - \( i^1 = i \) - \( i^2 = -1 \) - \( i^3 = -i \) - \( i^4 = 1 \) - \( i^5 = i \) (and the cycle repeats) 2. **Find the Remainders**: To simplify \( i^{101}, i^{102}, i^{103}, \ldots, i^{108} \), we can find the remainders when these exponents are divided by 4: - \( 101 \mod 4 = 1 \) → \( i^{101} = i^1 = i \) - \( 102 \mod 4 = 2 \) → \( i^{102} = i^2 = -1 \) - \( 103 \mod 4 = 3 \) → \( i^{103} = i^3 = -i \) - \( 104 \mod 4 = 0 \) → \( i^{104} = i^0 = 1 \) - \( 105 \mod 4 = 1 \) → \( i^{105} = i^1 = i \) - \( 106 \mod 4 = 2 \) → \( i^{106} = i^2 = -1 \) - \( 107 \mod 4 = 3 \) → \( i^{107} = i^3 = -i \) - \( 108 \mod 4 = 0 \) → \( i^{108} = i^0 = 1 \) 3. **Substitute the Values**: Now substitute these values back into the original expression: \[ i^{101} + i^{102} + i^{103} + i^{104} + i^{105} + i^{106} + i^{107} + i^{108} = i + (-1) + (-i) + 1 + i + (-1) + (-i) + 1 \] 4. **Combine Like Terms**: Now, combine the terms: - Combine the \( i \) terms: \( i - i + i - i = 0 \) - Combine the real terms: \( -1 + 1 - 1 + 1 = 0 \) 5. **Final Result**: Therefore, the sum is: \[ 0 + 0 = 0 \] ### Final Answer: The value of \( i^{101} + i^{102} + i^{103} + \ldots + i^{108} \) is \( \boxed{0} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of i^(i) , is

The value of i^(1+i) is

The value of (i+1)(i-1) is

The value of (1+i)/(1-i) is

Find the value of i^4 + i^5 + i^6 + i^7

The value of (i^(3)+i^(4)) is

The value of 2+i+i^(2)+i^(3)