Home
Class 14
MATHS
If A= [(alpha,beta),(gamma,-alpha)] is s...

If `A= [(alpha,beta),(gamma,-alpha)]` is such that `A^(2)=I`, then

A

1 + `alpha^2` + `beta gamma` = 0

B

1 - `alpha^2` + `beta gamma` = 0

C

1 - `alpha^2` - `beta gamma` = 0

D

1 + `alpha^2` - `beta gamma` = 0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[alpha,betagamma,alpha]] is such that A^(2)=I, then (A)1+alpha^(2)+beta gamma=0(B)1-alpha^(2)+beta gamma,=0(C)1-alpha^(2)-beta gamma,=0(D)1+alpha^(2)-beta gamma=0

Given that A=[(alpha, beta),(gamma, alpha)] and A^(2) =3I , then :

Given that A=[(alpha, beta),(gamma, - alpha)] and A^2 =3 I then :

If alpha,beta,gamma are the roots of the equation x^(3)-x+2=0 then the equation whose roots are alpha beta+(1)/(gamma),beta gamma+(1)/(alpha),gamma alpha+(1)/(beta) is

If alpha,beta,gamma are the roots of the equation x^(3)+qx+r=0 then find the equation whose roots are ( a )alpha+beta,beta+gamma,gamma+alpha(b)alpha beta,beta gamma,gamma alpha

If alpha,beta,gamma are the roots of the equation x^(3)+qx+r=0 then equation whose roots are beta gamma-alpha^(2),gamma alpha-beta^(2),alpha beta-gamma^(2) is

If direction angles of a line are alpha, beta, gamma such that alpha+beta=90^(@) , then (cos alpha+cos beta+cos gamma)^(2)=

If alpha,beta,gamma are the roots of the equation x^(3)+3x-2=0 then the equation whose roots are alpha(beta+gamma),beta(gamma+alpha),gamma(alpha+beta) is

Q.show that det [[- alpha (2), alpha beta, gamma alphaalpha beta, -beta ^ (2), beta gammagamma alpha, beta gamma, -gamma ^ (2)]] = 4 alpha ^ (2) beta ^ (2) gamma ^ (2)