Home
Class 14
MATHS
Find the value of lambda for which the v...

Find the value of `lambda` for which the volume of parallelepiped formed by the vector `hati+lambda hat j+hat k. hatj+lambda hatk` and `lambda hti + hatk` is minimum.

A

`-1/sqrt 3`

B

`-sqrt3`

C

`sqrt 3`

D

`1/sqrt 3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \lambda \) for which the volume of the parallelepiped formed by the vectors \( \mathbf{a} = \hat{i} + \lambda \hat{j} + \hat{k} \), \( \mathbf{b} = \hat{j} + \lambda \hat{k} \), and \( \mathbf{c} = \lambda \hat{i} + \hat{k} \) is minimized, we will follow these steps: ### Step 1: Write the vectors We have the following vectors: - \( \mathbf{a} = \hat{i} + \lambda \hat{j} + \hat{k} \) - \( \mathbf{b} = \hat{j} + \lambda \hat{k} \) - \( \mathbf{c} = \lambda \hat{i} + \hat{k} \) ### Step 2: Calculate the volume of the parallelepiped The volume \( V \) of the parallelepiped formed by the vectors \( \mathbf{a}, \mathbf{b}, \mathbf{c} \) can be calculated using the scalar triple product, which is given by the determinant of the matrix formed by these vectors: \[ V = |\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})| \] This can be computed as the determinant of the matrix: \[ \begin{vmatrix} 1 & \lambda & 1 \\ 0 & 1 & \lambda \\ \lambda & 0 & 1 \end{vmatrix} \] ### Step 3: Compute the determinant Calculating the determinant, we have: \[ V = \begin{vmatrix} 1 & \lambda & 1 \\ 0 & 1 & \lambda \\ \lambda & 0 & 1 \end{vmatrix} = 1 \cdot \begin{vmatrix} 1 & \lambda \\ 0 & 1 \end{vmatrix} - \lambda \cdot \begin{vmatrix} 0 & \lambda \\ \lambda & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 0 & 1 \\ \lambda & 0 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} 1 & \lambda \\ 0 & 1 \end{vmatrix} = 1 \) 2. \( \begin{vmatrix} 0 & \lambda \\ \lambda & 1 \end{vmatrix} = 0 \cdot 1 - \lambda \cdot \lambda = -\lambda^2 \) 3. \( \begin{vmatrix} 0 & 1 \\ \lambda & 0 \end{vmatrix} = 0 \cdot 0 - 1 \cdot \lambda = -\lambda \) Substituting these back into the determinant: \[ V = 1 \cdot 1 - \lambda \cdot (-\lambda^2) + 1 \cdot (-\lambda) = 1 + \lambda^3 - \lambda \] Thus, the volume is: \[ V = \lambda^3 - \lambda + 1 \] ### Step 4: Differentiate the volume with respect to \( \lambda \) To find the minimum volume, we differentiate \( V \): \[ \frac{dV}{d\lambda} = 3\lambda^2 - 1 \] ### Step 5: Set the derivative to zero Setting the derivative equal to zero to find critical points: \[ 3\lambda^2 - 1 = 0 \] Solving for \( \lambda \): \[ 3\lambda^2 = 1 \implies \lambda^2 = \frac{1}{3} \implies \lambda = \pm \frac{1}{\sqrt{3}} \] ### Step 6: Determine the minimum value To find which of these values gives a minimum volume, we can check the second derivative: \[ \frac{d^2V}{d\lambda^2} = 6\lambda \] At \( \lambda = \frac{1}{\sqrt{3}} \), \( \frac{d^2V}{d\lambda^2} = 6 \cdot \frac{1}{\sqrt{3}} > 0 \) (indicating a local minimum). At \( \lambda = -\frac{1}{\sqrt{3}} \), \( \frac{d^2V}{d\lambda^2} = 6 \cdot -\frac{1}{\sqrt{3}} < 0 \) (indicating a local maximum). Thus, the value of \( \lambda \) for which the volume is minimized is: \[ \lambda = \frac{1}{\sqrt{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If the volume of parallelopiped formed by the vectors hat i+lambdahat j+hat k,hat j+lambdahat k and lambdahat i+hat k is minimum then lambda is equal to

Find the values of lambda for which the angle between the vectors vec a=2 lambda^(2)hat i+4 lambdahat j+hat k and vec b=7hat i-2hat j+lambdahat k is obtuse.

Find 'lambda' . If the vectors lambdahati+hatj+2hatk, 2hati-hatj+lambdahatk , and hati+lambdahatj-hatk are coplanar.

The value of lambda, for which the four points 2hati+3hatj-hatk, hati-2hatj+3hatk, 3hati+4hatj-2hatk, hati-6hatj+lambda hatk are coplanar, is

Find the value of lambda in the unit vector 0.4 hati + 0.8 hatj + lambda hatk .

For what value of lambda are the vectors lambda hat(i)+(1 + lambda) hat(j) + (1 + 2 lambda) hat( k) and (1-lambda) hat(i)+lambda hat(j) + 2 hat(k) perpendicular ?

The number of distinct real values of lambda, for which the vectors -lambda^(2)hat i+hat j+k,hat i-lambda^(2)hat j+hat k and hat i+hat j-lambda^(2)hat k are coplanar is a.zero b.one c.two d.three

Find the value of lambda for which the four points with position vectors (-hat(j)+hat(k)), (2hat(i)-hat(j)-hat(k)), (hat(i)+lambda hat(j)+hat(k))and (3hat(j)+3hat(k)) are coplanar.

Find the angul between two vectors A= 2 hat j + hat j - hat k and B=hat j - hat k and B = hati - hatk .