Home
Class 14
MATHS
If cos 4x = 1 + k sin^2xcos^2x then k =?...

If cos 4x = 1 + `k sin^2xcos^2x` then k =?

A

8

B

4

C

-8

D

-4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos 4x = 1 + k \sin^2 x \cos^2 x \) and find the value of \( k \), we will use trigonometric identities. ### Step-by-step Solution: 1. **Use the Double Angle Formula for Cosine:** We know that: \[ \cos 4x = \cos(2 \cdot 2x) = 2\cos^2(2x) - 1 \] Now, we need to express \( \cos(2x) \) in terms of \( \sin^2 x \) and \( \cos^2 x \). 2. **Apply the Double Angle Formula for Cosine Again:** We can express \( \cos(2x) \) as: \[ \cos(2x) = 2\cos^2 x - 1 \] Substituting this into the equation for \( \cos 4x \): \[ \cos 4x = 2(2\cos^2 x - 1)^2 - 1 \] 3. **Expand the Expression:** First, calculate \( (2\cos^2 x - 1)^2 \): \[ (2\cos^2 x - 1)^2 = 4\cos^4 x - 4\cos^2 x + 1 \] Now substitute back: \[ \cos 4x = 2(4\cos^4 x - 4\cos^2 x + 1) - 1 = 8\cos^4 x - 8\cos^2 x + 2 - 1 \] Simplifying gives: \[ \cos 4x = 8\cos^4 x - 8\cos^2 x + 1 \] 4. **Express \( \cos^2 x \) in terms of \( \sin^2 x \):** We know that \( \cos^2 x = 1 - \sin^2 x \). Substitute this into the equation: \[ \cos 4x = 8(1 - \sin^2 x)^2 - 8(1 - \sin^2 x) + 1 \] 5. **Expand and Simplify:** Expanding \( (1 - \sin^2 x)^2 \): \[ (1 - \sin^2 x)^2 = 1 - 2\sin^2 x + \sin^4 x \] Therefore: \[ \cos 4x = 8(1 - 2\sin^2 x + \sin^4 x) - 8(1 - \sin^2 x) + 1 \] Simplifying this gives: \[ \cos 4x = 8 - 16\sin^2 x + 8\sin^4 x - 8 + 8\sin^2 x + 1 \] Combining like terms results in: \[ \cos 4x = 8\sin^4 x - 8\sin^2 x + 1 \] 6. **Set the Equation Equal to the Given Form:** Now we have: \[ \cos 4x = 1 + k \sin^2 x \cos^2 x \] We can express \( \sin^2 x \cos^2 x \) as \( \sin^2 x (1 - \sin^2 x) \): \[ k \sin^2 x \cos^2 x = k \sin^2 x (1 - \sin^2 x) \] 7. **Compare Coefficients:** From the equation \( 8\sin^4 x - 8\sin^2 x + 1 = 1 + k \sin^2 x (1 - \sin^2 x) \), we can compare coefficients: - The coefficient of \( \sin^4 x \) gives \( k = -8 \). ### Final Answer: Thus, the value of \( k \) is: \[ \boxed{-8} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If cos4x=1+k sin^(2)x cos^(2)x, then write the value of k

If sin x+cos x=1+sin x.cos x then x=

(1)/(sin x.cos^(2)x)

The number of solution of sin^(3)x cos x + sin^(2)x cos^(2)x+sinx cos^(3)x=1 in [0,2pi) is k-2 then k is ______

2^(sin x)+2^(cos x)>=k then k=

If solution of the equation sin^(4)2x+cos^(4)2x=sin2x*cos2x is of the form (n pi)/(2)+(pi)/(k),n in I, then value of k is

The value of k, for which (cos x+ sin x)^(2) +k sin x cos x-1 =0 is an identity, is

int(cos2x)/(sin^(2)xcos^(2)x)dx=

If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equation 1+cos10x cos6x =2cos^(2)8x+sin^(2)8x," then "(K)/(10)=