Home
Class 12
MATHS
If ABCDEF is a regular hexagon with vec(...

If ABCDEF is a regular hexagon with `vec(AB) = vec(a) ,vec(BC ) = vec(b) ` then `vec(CE)` equals :

A

`vec(b) - vec(a)`

B

`- vec(b)`

C

`vec(b) - 2vec(a)`

D

`vec(b) +2vec(a)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If ABCDEF is a regular hexagon then vec(AD)+vec(EB)+vec(FC) equals :

ABCDEF is a regular hexagon. Express the vectors vec (CD) , vec (DE) , vec (EF) , vec (FA) , vec (CE) in terms of vec (AB) and vec (BC) .

ABCDEF is a regular hexagon. Show that : vec(AB)+vec(AC)+vec(AD)+vec(AE)+vec(AF)=6vec(AO) . Where O is the centre of the hexagon.

ABCDEF is a regular hexagon. Show that : vec(OA)+vec(OB)+vec(OC)+vec(OD)+vec(OE)+vec(OF)=vec0 . Where O is the centre of the hexagon.

If ABCD is a parallelogram and vec AB = vec a , vec BC= vec b then show that vec AC = vec a+ vec b and vec BD = vec b- vec a .

If ABCD is a parallelogram and vec AB = vec a , vec BC= vec b then give geometrical significance of |quad vec a+ vec b|=|quad vec a- vec b| .

if A,B,C,D and E are five coplanar points, then vec(DA) + vec( DB) + vec(DC ) + vec( AE) + vec( BE) + vec( CE) is equal to :

ABCDE is a pentagon. Prove that the resultant of forces vec (AB), vec(AE), vec(BC), vec(DC), vec(ED) and vec(AC) is 3vec(AC) .

Statement 1 : In DeltaABC , vec(AB) + vec(BC) + vec(CA) = 0 Statement 2 : If vec(OA) = veca, vec(OB) = vecb , then vec(AB) = veca + vecb

In a regular hexagon ABCDEF, AB=a,BC=b and CD=c. Then, vec(AE) is equal to