Home
Class 12
MATHS
Let f : (2,3) to( 0,1) be defined by f ...

Let `f : (2,3) to( 0,1)` be defined by `f (x) = x -[x],` where ]. denotes the greatest in integer value function , them `f ^(-1) (x)` equals :

A

`x -2`

B

`x +1`

C

`x -1`

D

`x +2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

If f(x)=x-[x], where [x] is the greatest integer less than or equal to x, then f(+1/2) is: