Home
Class 12
MATHS
If f (x) = (sin [x])/([x]) for [x] ne 0....

If `f (x) = (sin [x])/([x])` for `[x] ne 0.` Then `lim _(x to 0_(-))` f (x) equals :

A

1

B

0

C

sin 1

D

no number i.e. does not exist.

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Consider the function defined on [0,1] rarr R , f(x) =(sinx- xcosx)/(x^(2)), if x ne 0 and f(0) =0 int _(0)^(1)f(x) is equal to

Consider the function f (x) = 1/x^2 for x > 0. To find lim_(x to 0) f(x) .

Knowledge Check

  • f (x) = (| x|)/( x) , x ne 0 then the value of function

    A
    1
    B
    0
    C
    `-1`
    D
    `f (x) = {{:(1"," ,x gt 0 ),(-1",",x lt 0 ):}`
  • Similar Questions

    Explore conceptually related problems

    If f(x)={("sin"[x])/([x]) ,for [x]!=0, 0 ,for[x]=0,where [x] denotes the greatest integer less than or equal to x , then lim_(x→0)f(x) is (a) 1 (b) 0 (c) -1 (d) none of these

    Let f: R rarr [10,oo) be such that lim_(x rarr 5)f(x) exists and lim_(x rarr 5) ((f (x))^(2)-9)/(sqrt(|x-5|))=0 . Then lim_(x rarr 5) f(x) equals :

    If f(x) = {{:((sin[x])/([x]),[x] != 0),(0,[x] = 0):} , where [x] denotes the greatest integer less than or equal to x, then lim_(x to 0) equals

    If f(x)^2 xx f((1-x)/(1+x)) = 64 x, x ne 0,1 then f(x) is equal to

    If f(x) = |(sin x, cos x , tan x),(x^3, x^2 ,x),(2x, 1,x)| then Lim_(x to 0) (f(x))/(x^2) equals

    Let f(x) = {:{((sinx)/x + cosx, when x ne 0),(2, when x = 0):} show that f (x) is continouous at x = 0.

    Consider the function : f (x) ={(x+2, x ne 1),(0,x=1):} . To find lim_(x to 1) f(x) .