Home
Class 12
MATHS
The period of the function f(x) = (sin x...

The period of the function `f(x) = (sin x + sin 3x - sin 5x + sin 7x)/(cos x + cos 3x + cos 5x + cos 7x)` is

A

`pi`

B

`pi//2`

C

`pi//3`

D

`pi//4`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin x + sin 3x + sin 5x + sin 7x= 4 cos x cos 2x sin 4x

Prove that: (sin 3x + sin x) sin x + (cos 3x -cos x) cos x = 0

Prove that (sin 4x + sin 3x + sin 2x)/(cos 4x + cos 3x + cos 2x) = tan 3x

The domain of the function sin^-1 x + cos x is

Prove that: ((sin 7x + sin 5x) + (sin 9x + sin 3x))/((cos7x + cos5x) + (cos9x + cos 3x))=tan 6x

The minimum value of the function f(x)=(3 sin x - 4 cos x - 10)(3 sin x + 4 cos x-10) , is

Integrate the function sin x sin (cos x)

Prove the following: cot 4x (sin 5x + sin 3x) = cot x (sin 5x -sin 3x)

Prove that : (cos 9x - cos 5x)/(sin 17x -sin 3x)=- (sin 2x)/(cos 10x) .

Period of f(x) = sin^4 x + cos^4 x