Home
Class 12
MATHS
Lim(n to 0) sum(x + 1)^(n) tan^(-1) (1/(...

`Lim_(n to 0) sum_(x + 1)^(n) tan^(-1) (1/(2r^2))` equals

A

`pi//2`

B

`pi//3`

C

`pi//4`

D

`pi//6`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to

Let r^(th) term t _(r) of a series if given by t _(c ) = (r )/(1+r^(2) + r^(4)) . Then lim _(n to oo) sum _(r =1) ^(n) t _(r) is equal to :

lim_(nto oo)sum_(r=1)^(n)r/(n^(2)+n+4) equals a. 0 b. 1/3 c. 1/2 d.1

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

Let a_(n)=int_(0)^(pi//2)(1-sint )^(n) sin 2t, then lim_(n to oo)sum_(n=1)^(n)(a_(n))/(n) is equal to

The value of lim_(xto0)2/(x^(3))(sin^(-1)x-tan^(-1)x)^(2//x^(3)) equals

If f(x)=lim_(t to 0)[(2x)/(pi).tan^(-1)(x/(t^(2)))] ,then f(1) is …….

lim_(n rarr infty) sum_(k=1)^(n) (k)/(n^(2)+k^(2)),x gt 0 is equal to

If f ( x) = Sigma_(r=1)^(n) tan^(-1) ( 1/(x^(2) + ( 2r -1) x + (r^(2) - r + 1)))" , then " | lim_(n to oo) f'(0)| is

Let S be the sum of all possible determinants of order 2 having 0,1,2 and 3 as their elements,. Find the common root alpha of the equations x^(2)+ax+[m+1]=0, x^(2)+bx+[m+4]=0 and x^(2)-cx+[m+15]=0 such that alphagtS wherea+b+c=0 and m=lim_(n to 00)(1)/(n)sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) and [.] denotes the greates integer function.