Home
Class 12
MATHS
f(x)=sin^(-1)[x^(2)+1/2]+cos^(-1)[x^(2)-...

`f(x)=sin^(-1)[x^(2)+1/2]+cos^(-1)[x^(2)-1/2]`, where `[*]` denotes the greatest integer function.

A

`{pi/2, pi}`

B

`{0, pi//2}`

C

`{pi}`

D

`(0, pi//2)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes the greatest integer function, is (a) {pi/2,pi} (b) {pi} (c) {pi/2} (d) none of these

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x]) , where [.] denotes the greatest integer function.

Consider f(x) = sin^(-1) [2x] + cos^(-1) ( [ x] - 1) ( where [.] denotes greatest integer function .) If domain of f(x) " is " [a,b) and the range of f(x) is {c,d}" then " a + b + (2d)/c is equal to ( where c lt d )

Find the domain and range of the following function: f(x)=sin^(-)[log_(2)((x^(2))/2)] , where [.] denotes greatest integer function.

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

f(x)=sin^(-1)[2x^(2)-3] , where [*] denotes the greatest integer function. Find the domain of f(x).

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function. then range of f(x) is