Home
Class 12
MATHS
If f(x) = |(sin x, cos x , tan x),(x^3, ...

If `f(x) = |(sin x, cos x , tan x),(x^3, x^2 ,x),(2x, 1,x)|` then `Lim_(x to 0) (f(x))/(x^2)` equals

A

`3`

B

`-1`

C

`0`

D

`1`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) =|{:(secx,x^(2),x),(2sinx,x^(3),2x^(2)),(tan3x,x^(2),x):}|lim_(x to 0)f(x)/(x^(4)) is equal to

If f (x) = (sin [x])/([x]) for [x] ne 0. Then lim _(x to 0_(-)) f (x) equals :

If f(x) = (cos^2 x + sin^4 x)/(cos^4x + sin^2 x) , then f(2016) is equal to

For n in N, let f_(n) (x) = tan ""(x)/(2) (1+ sec x ) (1+ sec 2x) (1+ sec 4x)……(1+ sec 2 ^(n)x), the lim _(xto0) (f _(n)(x))/(2x) is equal to :

Inverse of f(x) = [(cos x , sin x, 0),(-sin x, cos x, 0),(0,0,1)] is

If f(x)=log((1+x)/(1-x)) , then f((2x)/(1+x^2)) equal to:

If f'(x) = a sin x + b cos x and f'(0) = 4,f(0) = 3, f((pi)/(2))= 5 , find f(x).

if f(x) = (x - a_1) (x - a_2) .....(x - a_n) then find the value of lim_(x to a_1) f(x)

Consider the function : f (x) ={(x-2,x 0):} . To find lim_(x to 0) f(x) .

If f(x) = (1 - x) tan (pi x)/(2) then "limit"_(x->1) f(x) is equal to :