Home
Class 12
MATHS
If f(x)= (1 + x)^n then the value of f(0...

If `f(x)= (1 + x)^n` then the value of `f(0) + f'(0) + (f''(0))/(2!) + .... + (f^n(0))/(n!)` is

A

`n`

B

`2^n`

C

`2^(n - 1)`

D

`2^(n + 1)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

if f(x) = x^n then the value of f(1) - (f'(1))/(1!) + (f''(1))/(2!) + ---+((-1)^n f''^--n times (1))/(n!)

If f (x) = |x|+|x-1|, find the value of : f(0).

If f (x) = (a-x^n)^(1//n) prove that f(f(x)) = x

Let f : R rarr R be a differentiable function at x = 0 satisfying f(0) = 0 and f'(0) = 1, then the value of lim_(x to 0) (1)/(x) . sum_(n=1)^(oo)(-1)^(n).f((x)/(n)) , is a. 0 b. -log2 c. 1 d. e

If f(x) = 2x - 5, then f (0) is :

A=[(1,tan x),(-tan x,1)] and f(x) is defined as f(x)= det. (A^(T)A^(-1)) then the value of ubrace(f(f(f(f..........f(x)))))_("n times") is (n ge 2) _______ .

If f'(x) = a sin x + b cos x and f'(0) = 4,f(0) = 3, f((pi)/(2))= 5 , find f(x).

Let f_(1) (x) and f_(2) (x) be twice differentiable functions where F(x)= f_(1) (x) + f_(2) (x) and G(x) = f_(1)(x) - f_(2)(x), AA x in R, f_(1) (0) = 2 and f_(2)(0)=1. "If" f'_(1)(x) = f_(2) (x) and f'_(2) (x) = f_(1) (x) , AA x in R then the number of solutions of the equation (F(x))^(2) =(9x^(4))/(G(x)) is...... .

If f(x) = alpha x^n , prove that alpha= (f'(1))/n .