Home
Class 12
MATHS
If e^(f(x)) = log x then f'(e) equals...

If `e^(f(x)) = log x` then `f'(e)` equals

A

`e`

B

`e^(-1)`

C

`1`

D

0

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =|log_(e)|x||, then f'(x) equals

If f(x) =|log_(e)|x||, then f'(x) equals

Let f(x) = log x, Evaluate f' (e) .

If f(x) = log (2x-1), find f'( c ) .

If f(x) = log |x|, then for x ne 0 f'(x) is equal to

If e^f(x)= log x and g(x) is the inverse function of f(x), then g'(x) is

Let f(x) =1+2sin(e^x/(e^x+1)) x ge 0 then f^(-1)(x) is equal to (assuming f is bijectve)

If f(x)=log_(x^(2))(logx) ,then f '(x)at x= e is

If f(x) = log x and g(x) = e^x then fog(x) is :

If f(x)=e^(1-x) then f(x) is