Home
Class 12
MATHS
If In = int cot^n xdx then (cot^(n - 1)...

If `I_n = int cot^n xdx ` then `(cot^(n - 1))/(n - 1)` equals

A

`I_n + I_(n - 2)`

B

`-(I_n + I_(n - 2))`

C

`I_n - I_(n - 2)`

D

`- I_n + I_(n - 1) (n ge 4)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int("In "x)^(n)dx, " then " I_(n)+nI_(n-1)=

If I_(n)=int cot^(n) x dx , then I_(0)+I_(1)+2(I_(2)+I_(3)+...+I_(8))+I_(9)+I_(10) equals to (where u=cot x )

int cot^3x cosec^2 xdx

int (a+sqrt x)^n /sqrtxdx, n ne -1

The value of Sigma_(n=1)^(infty) cot^(-1) ( n^(2) + n +1) is also equal to

If I_n=int_0^(pi/4) tan^n x dx , ( n > 1 and is an integer), then

If A^5=O such that A^n != I for 1 <= n <= 4 , then (I - A)^-1 is equal to

If I_(n)=int z^(n)e^(1//z)dz , then show that (n+1)! I_(n)=I_(0)+e^(1//z)(1!z^(2)+2!z^(3)+...+n!z^(n+1)) .