Home
Class 12
MATHS
The latus rectum of a hyperbola 9x^(2) -...

The latus rectum of a hyperbola `9x^(2) - 16y^(2) + 72x-32y-16 = 0` is :

A

`(9)/(2)`

B

`-(9)/(2)`

C

`(32)/(3)`

D

`-(32)/(3)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the co-ordinates of the foci, the vertices and length of latus-rectum of the hyperbola : 16x^(2) - 9y^(2) = 576 .

The latus rectum of parabola 9x^2-6x+36y+19=0 is:

Find the centre, eccentricity, foci and directrices of the hyperbola : 9x^2-16y^2+ 18x +32y-151 = 0 .

The latus rectum of the ellipse 16x^2+y^2=16 is:

The length of the latus rectum of hyperbla x^2/9-y^2/16=1 is:

Find all the aspects of hyperbola 16x^(2)-3y^(2)-32x+12y-44=0.