Home
Class 12
MATHS
If f(x) = (1 - x) tan(pi x)/(2) then "l...

If f(x) = (1 - x) tan`(pi x)/(2)` then `"limit"_(x->1)` f(x) is equal to :

A

`(pi)/(2)`

B

`(2)/(pi)`

C

0

D

1

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x) = x tan ^(-1) (x^(2)) then find the f'(x)

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

f(x)=cot^(- 1)(x^2-4x+5) then range of f(x) is equal to :

If f(x) = (1)/(1-x) , show that f(f(x)) = x

If f is diffenrentiable at x = 1 , then underset (xto1) ("limit") (xf(1)-f(x))/(x-1) is equal to :

If tan^-1 2x + tan^-1 3x = pi/2 , then the value of x is equal to

If f(x)=0 is a quadratic equation such that f(-pi)=f(pi)=0 and f(pi/2)=-(3pi^2)/4, then lim_(x->-pi)(f(x))/("sin"(sinx) is equal to

For n in N, let f_(n) (x) = tan ""(x)/(2) (1+ sec x ) (1+ sec 2x) (1+ sec 4x)……(1+ sec 2 ^(n)x), the lim _(xto0) (f _(n)(x))/(2x) is equal to :