Home
Class 12
MATHS
if f: 9R to 9R satisfies f(x+y)=f(x)+f(y...

if `f: 9R to 9R` satisfies `f(x+y)=f(x)+f(y)`, for all `x, y , in 9 R and f(1)=10` then `sum_(r=1)^(n) f(r)`

A

5n

B

5(n+1)

C

10n (n+1)

D

5n(n+1)

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) satisfies the relation, f(x+y)=f(x)+f(y) for all x,y in R and f(1)=5, then find sum_(n=1)^(m)f(n) . Also, prove that f(x) is odd.

If f is a function satisfying f(x+y)= f(x) f(y) for all x,y in N such that f(1)=3 and sum_(x=1)^n f(x)=120 , find the value of n.

If f is a function satisfying f(x+y)=f(x)xxf(y) for all x ,y in N such that f(1)=3 and sum_(x=1)^nf(x)=120 , find the value of n .

If f: R rarrR satisfying: f(x-f(y)) = f(f(y) +f(x)-1, for all x, y in R , then -f(10) equals.

If f(x+y) = f(x) + f(y) + |x|y+xy^(2),AA x, y in R and f'(0) = 0 , then

If a function satisfies (x-y)f(x+y)-(x+y)f(x-y)=2(x^2 y-y^3) AA x, y in R and f(1)=2, then

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f be a function satisfying f(x+y)=f(x) + f(y) for all x,y in R . If f (1)= k then f(n), n in N is equal to

If f:R rarr R satisfying f(x-f(y))=f(f(y))+xf(y)+f(x)-1, for all x,y in R , then (-f(10))/7 is ……… .