Home
Class 12
MATHS
If 1+ sin x+sin^(2)x+......... +oo=4 + 2...

If `1+ sin x+sin^(2)x+......... +oo=4 + 2sqrt(3),0 le x le pi`, then x is equal to

A

`(pi)/(6)`

B

`(pi)/(3)`

C

`(pi)/(3) or (pi)/(6)`

D

`(pi)/(3) or (2pi)/(3)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1 + sin x+ sin^2 x +.... up to oo=4+2 sqrt3, 0ltxlt pi and x ne pi/2 , then x=

If 0 le x le pi and cosx=-4/5 then cos(x/2) is equal to:

sin (sin^-1 x + cos^-1 x) is equal to (-1 le x le 1)

If cos x- sin x ge 1 and 0 le x le 2pi , then find the solution set for x .

Simplify : sin^-1 (x sqrt(1-x) + sqrtx sqrt(1-x^2), 0 le x le 1 .

If sin^-1 x = y , then 0 le y le pi

Let f :[2,oo)to {1,oo) defined by f (x)=2^(x ^(4)-4x ^(3))and g : [(pi)/(2), pi] to A defined by g (x) = (sin x+4)/(sin x-2) be two invertible functions, then f ^(-1) (x) is equal to

Let f :[2,oo)to {1,oo) defined by f (x)=2^(x ^(4)-4x ^(3))and g : [(pi)/(2), pi] to A defined by g (x) = (sin x+4)/(sin x-2) be two invertible functions, then The set "A" equals to

lim _(xto0) (""^(3)sqrt(1+sin ^(2)x )- ""^(4) sqrt(1-2 tan x))/(sin x+ tan ^(2) x) is equal to:

The equation sin x + sin y + sin z =-3 for 0 le x le 2pi , 0 le y le 2pi , o le z le 2pi , has