Home
Class 12
MATHS
In a triangle, cosec A (sin B cos C + c...

In a triangle, `cosec A (sin B cos C + cos B sin C)` is equal to :

A

`(c)/(a)`

B

`(a)/(c)`

C

1

D

0

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle, sec A (cos B cos C-sin B sin C) is equal to :

Statement I: If in a triangle ABC, sin ^(2) A+sin ^(2)B+sin ^(2)C=2, then one of the angles must be 90^(@). Statement II: In any triangle ABC cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C

In any triangle ABC, prove that : sin (A + B) = sin C .

In DeltaABC,if cos A+ sin A -(2)/(cos B + sin B) =0, then (a+b)/c is equal to

Statement I In any triangle ABC a cos A+b cos B+c cos C le s. Statement II In any triangle ABC sin ((A)/(2))sin ((B)/(2))sin ((C)/(2))le 1/8

If in a triangle, a/(cosA)= b/(cos B) =c/(cos C) , then the triangle is :

Prove that : cos (A + B) = cos A cos B - sin A sin B .

Prove that : cos (A - B) = cos A cos B + sin A sin B .

The expression (cos 2b-cos 2a)/(sin 2b-sin2a) is equal to:

In any triangle ABC, prove that : a (cos C - cos B) = 2 (b-c) cos^2 frac (A)(2) .