Home
Class 12
MATHS
If omega^(3)=1 and omega ne1, then (1+om...

If `omega^(3)=1 and omega ne1`, then `(1+omega)(1+omega^(2))(1+omega^(4))(1+omega^(5))` is equal to

A

3

B

`-3`

C

9

D

1

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega ne 1 and omega^3=1 , then : (a omega+b+c omega^2)/(a omega^2+b omega+c) + (a omega^2+b+c omega)/(a+b omega+c omega^2) is equal to :

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3) . If [(1,1,1), (1, -omega^(2)-1 , omega^(2)),(1, omega^(2) , omega^(7))]=3k , then k is equal to

Let a, b, and c be three real numbers satifying [(a, b, c)] [(1,9,7),(8,2,7),(7,3,7)]=[(0,0,0)] Let omega be a solution of x^(3)-1=0 with Im (omega) gt 0 . If a=2 with b and c satisfying (E), then the value of 3/omega^(a)+1/omega^(b)+3/omega^(c) is equal to

If omega = (-1+sqrt3i)/2 , find the value of |(1, omega, omega^2),(omega, omega^2, 1),(omega^2, 1 , omega)|

Let omega be a solution of z^3-1 = 0 If a = 2 , b=8 and c =7 then the value of 3/(omega^a) + 3/(omega^b) + 3/(omega^c) is equal to

Let omega=-(1)/(2)+i(sqrt(3))/(2) . Then the value of the determinant |{:(1,1,1),(1,-1-omega^(2),omega^(2)),(1, omega^(2), omega^(4)):}| is

If omega!=1 is a complex cube root of unity, then prove that [{:(1+2omega^(2017)+omega^(2018)," "omega^(2018),1),(1,1+2omega^(2018)+omega^(2017),omega^(2017)),(omega^(2017),omega^(2018),2+2omega^(2017)+omega^(2018)):}] is singular

Value of |{:(1,omega,omega^(2)),(omega,omega^(2),1),(omega^(2),1,omega):}| is zero, where omega,omega^(2) are imaginary cube roots of unity.

Let omega be a complex cube root of unity with omega ne 1 . A fair die is thrown three times. If r_(1), r_(2) and r_(3) are the numbers obtained on the die, then the probability that omega^(r_(1)) + omega^(r_(2)) + omega^(r_(3)) = 0 is