Home
Class 12
MATHS
Let a(1),a(2),a(3) be terms of an Ap. If...

Let `a_(1),a_(2),a_(3)` be terms of an Ap. If `(a_(1)+a_(2)+----+a_(p))/(a_(1)+a_(2)----a_(q))=(p^(2))/(q^(2)), p ne q, "then" (a_(6))/(a_(21))` is

A

`(7)/(2)`

B

`(11)/(41)`

C

`(2)/(7)`

D

`(41)/(11)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3)"....." are in GP with first term a and common ratio r, then (a_(1)a_(2))/(a_(1)^(2)-a_(2)^(2))+(a_(2)a_(3))/(a_(2)^(2)-a_(3)^(2))+(a_(3)a_(4))/(a_(3)^(2)-a_(4)^(2))+"....."+(a_(n-1)a_(n))/(a_(n-1)^(2)-a_(n)^(2)) is equal to

If a_(1),a_(2),a_(3),a_(4),a_(5) are in HP, then a_(1)a_(2)+a_(2)a_(3)+a_(3)a_(4)+a_(4)a_(5) is equal to

If 4a^(2)+9b^(2)+16c^(2)=2(3ab+6bc+4ca) , where a,b,c are non-zero real numbers, then a,b,c are in GP. Statement 2 If (a_(1)-a_(2))^(2)+(a_(2)-a_(3))^(2)+(a_(3)-a_(1))^(2)=0 , then a_(1)=a_(2)=a_(3),AA a_(1),a_(2),a_(3) in R .

If (1+ax+bx^(2))^(4)=a_(0) +a_(1)x+a_(2)x^(2)+…..+a_(8)x^(8), where a,b,a_(0) ,a_(1)…….,a_(8) in R such that a_(0)+a_(1) +a_(2) ne 0 and |{:(a_(0),,a_(1),,a_(2)),(a_(1),,a_(2),,a_(0)),(a_(2),,a_(0),,a_(1)):}|=0 then the value of 5.(a)/(b) " is " "____"

If a_(1),a_(2),a_(3),"........",a_(n) are in AP with a_(1)=0 , prove that (a_(3))/(a_(2))+(a_(4))/(a_(3))+"......"+(a_(n))/(a_(n-1))-a_(2)((1)/(a_(2))+(1)/(a_(3))"+........"+(1)/(a_(n-2))) = (a_(n-1))/(a_(2))+(a_(2))/(a_(n-1)) .

Let y = 1 + (a_(1))/(x - a_(1)) + (a_(2) x)/((x - a_(1))(x - a_(2))) + (a_(3) x^(2))/((x - a_(1))(x - a_(2))(x - a_(3))) + … (a_(n) x^(n - 1))/((x - a_(1))(x - a_(2))(x - a_(3))..(x - a_(n))) Find (dy)/(dx)

Let a_(1),a_(2),a_(n) be sequence of real numbers with a_(n+1)=a_(n)+sqrt(1+a_(n)^(2)) and a_(0)=0 . Prove that lim_(xtooo)((a_(n))/(2^(n-1)))=2/(pi)

Suppose four distinct positive numbers a_(1),a_(2),a_(3),a_(4) are in G.P. Let b_(1)=a_(1), b_(2)=b_(1)+a_(2),b_(3)=b_(2)+a_(3)andb_(4)=b_(3)+a_(4) . Statement -1 : The numbers b_(1),b_(2),b_(3),b_(4) are neither in A.P. nor in G.P. Statement -2: The numbers b_(1),b_(2),b_(3),b_(4) are in H.P.

If A_(1),A_(2),A_(3),...,A_(n),a_(1),a_(2),a_(3),...a_(n),a,b,c in R show that the roots of the equation (A_(1)^(2))/(x-a_(1))+(A_(2)^(2))/(x-a_(2))+(A_(3)^(2))/(x-a_(3))+…+(A_(n)^(2))/(x-a_(n)) =ab^(2)+c^(2) x+ac are real.

Let A_(1), A_(2), A_(3),…,A_(n) be the vertices of an n-sided regular polygon such that (1)/(A_(1)A_(2))=(1)/(A_(1)A_(3))+(1)/(A_(1)A_(4)). Find the value of n.