Home
Class 12
MATHS
C(0)-C(1)+C(2)-C(3)+ ---+(-1)^(n)""^(n)C...

`C_(0)-C_(1)+C_(2)-C_(3)+ ---+(-1)^(n)""^(n)C_(n)` is equal to

A

`2^(n)`

B

`2^(n)-1`

C

0

D

`((3)/(2),6)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

(1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + C_(3) x^(3) + … + C_(n) x^(n) , prove that C_(0) - 2C_(1) + 3C_(2) - 4C_(3) + … + (-1)^(n) (n+1) C_(n) = 0

If (1 + x)^(n) = C_(0) + C_(1) x +C_(2) x^(2) +…+ C_(n) x^(n) , then the sum C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1)) is equal to

If (1 + x)^(n) = sum_(r=0)^(n) C_(r) x^(r),(1 + (C_(1))/(C_(0))) (1 + (C_(2))/(C_(1)))...(1 + (C_(n))/(C_(n-1))) is equal to

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1))) is equal to

sum_(r=1)^(n) {sum_(r1=0)^(r-1) ""^(n)C_(r) ""^(r)C_(r_(1)) 2^(r1)} is equal to

If ""^(n)C_(5)=""^(n)C_(10) then n equals :

Show that (C_(0))/(1) - (C_(1))/(4) + (C_(2))/(7) - … + (-1)^(n) (C_(n))/(3n +1) = (3^(n) * n!)/(1*4*7…(3n+1)) , where C_(r) stands for ""^(n)C_(r) .

(1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + ...+ C_(n) x^(n) , show that sum_(r=0)^(n) C_(r)^(3) is equal to the coefficient of x^(n) y^(n) in the expansion of {(1+ x)(1 + y) (x + y)}^(n) .

Prove that : C_(0)-3C_(1)+5C_(2)- ………..(-1)^n(2n+1)C_(n)=0