Home
Class 12
MATHS
Let omega=-(1)/(2)+i(sqrt(3))/(2). Then ...

Let `omega=-(1)/(2)+i(sqrt(3))/(2)`. Then the value of the determinant `|{:(1,1,1),(1,-1-omega^(2),omega^(2)),(1, omega^(2), omega^(4)):}|` is

A

`3 omega`

B

`3 omega(omega-1)`

C

`3omega^(2)`

D

`3 omega(1-omega)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3) . If [(1,1,1), (1, -omega^(2)-1 , omega^(2)),(1, omega^(2) , omega^(7))]=3k , then k is equal to

If omega = (-1+sqrt3i)/2 , find the value of |(1, omega, omega^2),(omega, omega^2, 1),(omega^2, 1 , omega)|

If omega^(3)=1 and omega ne1 , then (1+omega)(1+omega^(2))(1+omega^(4))(1+omega^(5)) is equal to

If omega!=1 is a complex cube root of unity, then prove that [{:(1+2omega^(2017)+omega^(2018)," "omega^(2018),1),(1,1+2omega^(2018)+omega^(2017),omega^(2017)),(omega^(2017),omega^(2018),2+2omega^(2017)+omega^(2018)):}] is singular

If omega is cube root of unity, then a root of the equation |(x + 1,omega, omega^2),(omega, x + omega , 1),(omega^2 , 1, x + omega)| = 0 is

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

Let omega be a complex cube root of unity with omega ne 1 . A fair die is thrown three times. If r_(1), r_(2) and r_(3) are the numbers obtained on the die, then the probability that omega^(r_(1)) + omega^(r_(2)) + omega^(r_(3)) = 0 is

If 1,omega,omega^(2),...omega^(n-1) are n, nth roots of unity, find the value of (9-omega)(9-omega^(2))...(9-omega^(n-1)).

Let omega be a solution of z^3-1 = 0 If a = 2 , b=8 and c =7 then the value of 3/(omega^a) + 3/(omega^b) + 3/(omega^c) is equal to

Let omega ne 1 be a complex cube root of unity. If (3-3omega+2omega^(2))^(4n+3) + (2+3omega-3omega^(2))^(4n+3)+(-3+2omega+3omega^(2))^(4n+3)=0 , then the set of possible value(s) of n is are