Home
Class 12
MATHS
Show that cot(pi/4 + x)*cot(pi/4 -x)=1...

Show that `cot(pi/4 + x)*cot(pi/4 -x)=1`

A

`-1`

B

`0`

C

`1`

D

`oo`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cot(pi/4 - 2 cot^-13) = 7

Prove the following: (tan(pi/4+x))/(tan(pi/4-x))=((1+tanx)/(1-tanx))^2

Prove that underset(-pi//4)overset(pi//4)intsin^2x dx = pi/4 - 1/2

Prove that underset(-pi//4)overset(pi//4)intcos^2x dx = pi/4+1/2

Prove the following: cos(pi/4-x)cos(pi/4-y)-sin(pi/4-x)sin(pi/4-y)= sin (x+ y)

Solve : cot^-1(2x)+cot^-1(3x)=pi/4

Show that : int_(0)^(pi//2) (sqrt(tan x) +sqrt(cot x))dx=sqrt(2)pi .

Prove the following: cos((3pi)/2+x)cos(2pi+x)[cot((3pi)/2-x)+cot(2pi+x)]=1

The value of cot((pi)/(4)+theta)cot((pi)/(4)-theta) is