Home
Class 12
MATHS
The points z(1),z(2),z(3),z(4) in the co...

The points `z_(1),z_(2),z_(3),z_(4)` in the complex plane are the vertices of a parallelogram taken in order if and only if

A

`z_1 + z_4 = z_2 + z_3`

B

`z_1 + z_3 + z_2 +z_4`

C

`z_1 + z_2 + z_3 + z_4`

D

`z_1 + z_2 + z_3 + z_4 =0`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If P(z_(1)),Q(z_(2)),R(z_(3)) " and " S(z_(4)) are four complex numbers representing the vertices of a rhombus taken in order on the complex plane, which one of the following is held good?

Consider four complex numbers z_(1)=2+2i, , z_(2)=2-2i,z_(3)=-2-2iandz_(4)=-2+2i),where i=sqrt(-1), Statement - 1 z_(1),z_(2),z_(3)andz_(4) constitute the vertices of a square on the complex plane because Statement - 2 The non-zero complex numbers z,barz, -z,-barz always constitute the vertices of a square.

A,B and C are the points respectively the complex numbers z_(1),z_(2) and z_(3) respectivley, on the complex plane and the circumcentre of /_\ABC lies at the origin. If the altitude of the triangle through the vertex. A meets the circumcircle again at P, prove that P represents the complex number (-(z_(2)z_(3))/(z_(1))) .

If z_(1),z_(2)andz_(3) are the affixes of the vertices of a triangle having its circumcentre at the origin. If zis the affix of its orthocentre, prove that Z_(1)+Z_(2)+Z_(3)-Z=0.

If z_(1),z_(2),z_(3),…………..,z_(n) are n nth roots of unity, then for k=1,2,,………,n

bb"statement-1" " Let " z_(1),z_(2) " and " z_(3) be htree complex numbers, such that abs(3z_(1)+1)=abs(3z_(2)+1)=abs(3z_(3)+1) " and " 1+z_(1)+z_(2)+z_(3)=0, " then " z_(1),z_(2),z_(3) will represent vertices of an equilateral triangle on the complex plane. bb"statement-2" z_(1),z_(2),z_(3) represent vertices of an triangle, if z_(1)^(2)+z_(2)^(2)+z_(3)^(2)+z_(1)z_(2)+z_(2)z_(3)+z_(3)z_(1)=0

If z_(1),z_(2)andz_(3) are the vertices of an equilasteral triangle with z_(0) as its circumcentre , then changing origin to z^(0) ,show that z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=0, where z_(1),z_(2),z_(3), are new complex numbers of the vertices.

In complex plane, the equation |z+ bar z|=|z- bar z| represents :

The points A,B and C represent the complex numbers z_(1),z_(2),(1-i)z_(1)+iz_(2) respectively, on the complex plane (where, i=sqrt(-1) ). The /_\ABC , is a. isosceles but not right angled b. right angled but not isosceles c. isosceles and right angled d. None of the above

Complex numbers z_(1),z_(2),z_(3) are the vertices of A,B,C respectively of an equilteral triangle. Show that z_(1)^(2)+z_(2)^(2)+z_(3)^(2)=z_(1)z_(2)+z_(2)z_(3)+z_(3)z_(1).