Home
Class 12
MATHS
If (1 - x + x^2)^n = a0 + a1 x + a2x^2 +...

If `(1 - x + x^2)^n = a_0 + a_1 x + a_2x^2 + ..... + a_(2n)x^(2n)` then `a_0 + a_2 + a_4 + ... + a_(2n)` equals

A

`(3^n + 1)/2`

B

`(3^n - 1)/2`

C

`(1 - 3^n)/2`

D

`3^n + 1/2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

lf (1 + x + x^2 + x^3)^5 = a_0+a_1x +a_2x^2+.....+a_(15)x^15 , then a_(10) equals to

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1+x-3x^2)^2145 = a_0+a_1 x+a_2 x^2+... then a_0-a_1+a_2-.. ends with

If (1+2x+3x^2)^(10)=a_0+a_1x+a_2x^2++a_(20)x^(20),t h e na_1 equals

Let (1 + x^(2))^(2) (1 + x)^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … if a_(0),a_(1) " and " a_(2) are in A.P , the value of n is

If (1+ x)^(n) = C_(0) + C_(1) x + C_(2)x^(2) + ...+ C_(n)x^(n) , prove that C_(1) + 2C_(2) + 3C_(3) + ...+ n""C_(n) = n*2^(n-1)

if f(x) = (x - a_1) (x - a_2) .....(x - a_n) then find the value of lim_(x to a_1) f(x)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

Let P(x) = a_(0) + a_(1)x^(2) + a_(2)x^(4) + ..........+ a_(n) x^(2n) be a polynomial in a real variable x with 0 lt a_(0) lt a_(1) lt a_(2) lt ……………. lt a_(n) The function P(x) has :

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .